Print Friendly and PDF
Templates are the foundation of generic programming, which involves writing code in a way that is independent of any particular type.

A template is a blueprint or formula for creating a generic class or a function. The library containers like iterators and algorithms are examples of generic programming and have been developed using template concept.
There is a single definition of each container, such as vector, but we can define many different kinds of vectors for example, vector <int> or vector <string>.
You can use templates to define functions as well as classes, let us see how do they work:

Function Template:

The general form of a template function definition is shown here:

template <class type> ret-type func-name(parameter list)
{
   // body of function
} 

Here, type is a placeholder name for a data type used by the function. This name can be used within the function definition.
The following is the example of a function template that returns the maximum of two values:

#include <iostream>
#include <string>
using namespace std;

template <typename T>
inline T const& Max (T const& a, T const& b) 
{ 
    return a < b ? b:a; 
} 
int main ()
{
 
    int i = 39;
    int j = 20;
    cout << "Max(i, j): " << Max(i, j) << endl; 

    double f1 = 13.5; 
    double f2 = 20.7; 
    cout << "Max(f1, f2): " << Max(f1, f2) << endl; 

    string s1 = "Hello"; 
    string s2 = "World"; 
    cout << "Max(s1, s2): " << Max(s1, s2) << endl; 

   return 0;
}
If we compile and run above code, this would produce the following result:
Max(i, j): 39
Max(f1, f2): 20.7
Max(s1, s2): World

Class Template:

Just as we can define function templates, we can also define class templates. The general form of a generic class declaration is shown here:
template <class type> class class-name 
{
.
.
.
}

Here, type is the placeholder type name, which will be specified when a class is instantiated. You can define more than one generic data type by using a comma-separated list.
Following is the example to define class Stack<> and implement generic methods to push and pop the elements from the stack:

#include <iostream>
#include <vector>
#include <cstdlib>
#include <string>
#include <stdexcept>

using namespace std;

template <class T>
class Stack { 
  private: 
    vector<T> elems;     // elements 

  public: 
    void push(T const&);  // push element 
    void pop();               // pop element 
    T top() const;            // return top element 
    bool empty() const{       // return true if empty.
        return elems.empty(); 
    } 
}; 

template <class T>
void Stack<T>::push (T const& elem) 
{ 
    // append copy of passed element 
    elems.push_back(elem);    
} 

template <class T>
void Stack<T>::pop () 
{ 
    if (elems.empty()) { 
        throw out_of_range("Stack<>::pop(): empty stack"); 
    }
 // remove last element 
    elems.pop_back();         
} 

template <class T>
T Stack<T>::top () const 
{ 
    if (elems.empty()) { 
        throw out_of_range("Stack<>::top(): empty stack"); 
    }
 // return copy of last element 
    return elems.back();      
} 

int main() 
{ 
    try { 
        Stack<int>         intStack;  // stack of ints 
        Stack<string> stringStack;    // stack of strings 

        // manipulate int stack 
        intStack.push(7); 
        cout << intStack.top() <<endl; 

        // manipulate string stack 
        stringStack.push("hello"); 
        cout << stringStack.top() << std::endl; 
        stringStack.pop(); 
        stringStack.pop(); 
    } 
    catch (exception const& ex) { 
        cerr << "Exception: " << ex.what() <<endl; 
        return -1;
    } 
} 

If we compile and run above code, this would produce the following result:
7
hello
Exception: Stack<>::pop(): empty stack
zubairsaif

Zubair saif

A passionate writer who loves to write on new technology and programming

Post A Comment:

0 comments: